Simulation of simply cross correlated random fields by series expansion methods
نویسنده
چکیده
A practical framework for generating cross correlated random fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The approach relies on well-known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem, which must normally be solved in computing the series expansion, into two smaller eigenproblems. Such a decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen only in the cross correlation between distant points and that they are negligibly small in practical situations. Some comments on available techniques for simulation of underlying random variables in connection with the accuracy of basic fields’ statistics at a given sample size are made. For this purpose a simple error assessment procedure is presented. Simulated random fields can be used both for representation of spatially correlated properties of structure or random load in the stochastic finite element method (SFEM). An example of this application is related to size effect studies in the nonlinear fracture mechanics of concrete, and is used to illustrate the method. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
A stochastic approach to nonlinear unconfined flow subject to multiple random fields
In this study, the KLME approach, a momentequation approach based on the Karhunen–Loeve decomposition developed by Zhang and Lu (Comput Phys 194(2):773–794, 2004), is applied to unconfined flow with multiple random inputs. The log-transformed hydraulic conductivity F, the recharge R, the Dirichlet boundary condition H, and the Neumann boundary condition Q are assumed to be Gaussian random field...
متن کاملKarhunen–Loève expansion for multi-correlated stochastic processes
We propose two different approaches generalizing the Karhunen–Loève series expansion to model and simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an identical set of uncorrelated random variables. The second approach (mcKL) relies on expa...
متن کاملSemi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force
in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...
متن کاملExplaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data*
T his article challenges Fixed Effects (FE) modeling as the ‘default’ for time-series-crosssectional and panel data. Understanding different within and between effects is crucial when choosing modeling strategies. The downside of Random Effects (RE) modeling— correlated lower-level covariates and higher-level residuals—is omitted-variable bias, solvable with Mundlak’s (1978a) formulation. Conse...
متن کاملQMC simulations of Heisenberg ferromagnet
We use the Quantum Monte Carlo Stochastic Series Expansion (SSE) algorithm to investigate the properties of the one-dimensional Heisenberg ferromagnet. We consider the model for two spin values s = 1 2 and s = 1 and study the dependence of the specific heat, magnetisation, magnetic susceptibility and correlation functions on temperature and magnetic field. Obtained results are compared to those...
متن کامل